
Implementation of a Framework for the On-Board Computer in the Cubesat Test
Bench Project Hycube

Matthieu Basset1, ∗

1Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO),
Université de Toulouse, 31055, Toulouse, FRANCE

(Dated: August 19, 2022)

Abstract— The lifetime of a Cubesat is often
less than expected due to errors in the func-
tioning period. These errors could often be
avoided by testing more before launch. Then,
developing a testing environment for Cubesats
must be a priority in every project to ensure
safety for the mission. The Hycube test bench
is to fulfil that purpose. It will provide a frame-
work for teams working on Cubesat projects to
run simulations on the functioning of the satellite.

Keywords—Cubesat, Nanosat, Framework

I. INTRODUCTION

While there is an exponentially increasing number of
cubesat launched each year. A huge part is still failing
to communicate with a ground station after deployment
or become unavailable due to errors, making them space
junk. Death on arrival (DOA) affects around 20% of
Cubesats successfully launched. Even passed the first
day, the reliability of Cubesat is still low [1].
Then working on testing satellites is crucial for Cubesat
projects. This is the main motivation for the Hycube
project: a test bench for Cubesats in ISAE-SUPAERO.
It is used for now to test the Cubesat CREME: a cooper-
ation between U-Space, ONERA and ISAE-SUPAERO,
which goal is to measure radiations in the Van Allen belt.
The aim of the test bench is to simulate the behaviour of
the satellite as accurately as possible

II. CONTEXT

A. Cubesats/Nanosats

There are several categories to differentiate satellites.
The two that are relevant to detail in this article are
Cubesats and Nanosats. Nanosats are satellites that
weight less than 10kg, they are a subcategory of small-
sats that are satellites lighter than 500kg. Cubesats are
satellites that have a given size, one unit (noted 1U) is
a cube of 10×10×10cm with a weight of 1.33kg at most.

∗ matthieu.basset@student.isae-supaero.fr

Cubesats are described as multiples of a unit (1.5U, 2U,
3U, 6U, etc. . . ).

FIG. 1. Cubesats most common formats

A majority of the Cubesats are launched by universi-
ties or companies that are interested in the low cost of
these projects that is appealing for various experiments
in space.

Nanosatellite launches by organisations

2
11

2 7 4
22

9 10 14 19 12
25

88

142
129

86

297

244

188

163

326

646

328

51 59

0 0

396

295 287

354

309

435

www.nanosats.eu2022/08/01

1998
2000

2002
2003

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023
2024

2025
2026

2027
0

50

100

150

200

250

300

350

400

450

500

550

600

650

N
a
n

o
sa

te
ll

it
e
s

Space agency

Company

Individual

Institute

Military

Non-profit

School

University

Nanosats.eu (2022 June) prediction

FIG. 2. Nanosats launched each year by organisation

mailto:matthieu.basset@student.isae-supaero.fr


2

B. Satellites test benches

However, cubesats project tend to fail very often.
Around 20% of cubesat launches result in DOA. Then
it is crucial to test as much as possible cubesats while
they are still on the ground. To that effect, a solution is
doing flatsats: having all the components put on a test
bench to conduct experiments on the satellite behaviour.
The Hycube project is precisely focused on developing a
test bench for the CREME cubesat and then is planned
to be reused for future projects.

In our case, the test bench is separated in several test-
ing subsystems:
• The main flatsat that simulates the behaviour of the
satellite, with the real on-board Ninano card.

• Other card such as ZedBoard or Zybo to perform
smaller scale tests without having to use the Ninano
board.

C. Hycube structure

The Hycube test bench project is divided in several
parts that interact with each other:
• The Mission planning that designs an initial planning
for the mission.

• The Operation part that sends to the ground segment
each task that the satellite has to do accordingly to the
planning.

• The Ground Segment (GS) must send telecommands
(TC) to the On-Board Computer (OBC) the tasks en-
coded in packets. It must also be able to telemeasures
(TM) from the OBC.

• The OBC must receive TCs from the GS and give the
right orders to the simulation or the Payload.

• The Payload is a camera that is used to take photos of
the Earth. It is not used in the first iteration.

• The Simulation returns simulated measures to the
OBC to for testing purposes.

The organisation is summed up in figure IVD

FIG. 3. Hycube project team organisation

D. CCSDS communication protocol

The Consultative Committee for Space Data Systems
(CCSDS) is a forum that defines norms and give rec-
ommendations for satellites. Their guidelines are helpful

when designing Cubesats. Their especially provide a for-
mat for packets and frames to exchange data [2] [3]. Since
coding and decoding packets hasn’t been implemented
yet for the first iteration on the OBC side, they won’t be
detailed in this article.

III. AIM & OBJECTIVES

The main goal for my internship is to have a working
first iteration of the Hycube project. I also have to pre-
pare the cryptography part which shall be in the next
iteration of the project.

A. Hycube first iteration

The first iteration’s aim is to have a solid basing to
work on for the rest of the project. The goal is to send
information from the operation software on the ground
to the simulated flight system. For the first iteration, a
lot of complexity has been cut through:
• The operation will send only a few commands to the
GS.

• The GS will send a packet instead of a frame to the
OBC to simplify treatment.

• The OBC will not decode the packet but read the raw
data and simply recognise some bits to figure out which
command has been sent.

• The OBC will send a unique standard command to the
simulation.

• The OBC will send back a ‘ping’ TM to the GS instead
of a packet with the measure information.

• The Simulation will only send back time and altitude
out of the data simulated.

• The Payload (camera) isn’t used.

B. Cryptography

While the first iteration does not include cryptography,
the second will, then preliminary research has to be done
to facilitate future work. CREME project will implement
Elliptic Curve Cryptography (ECC) to cipher TC and
TM. In the second iteration of the Hycube project, the
TCs will be ciphered by the GS, then deciphered by thee
OBC. And the TM will be ciphered by the OBC to be
deciphered by the GS after.

IV. METHODOLOGY

While working on a iteration based project, some con-
cessions have to be done. One of them is not using Wire-
less communication with antennas to exchange informa-
tion between GS and OBC. Then to exchange data, the
first iterations will use ethernet cables to exchange TCP
packets.



3

A. Python

An important part of the work performed to inter-
face the OBC with GS and simulation has been done in
python. There are several reasons to justify this choice.
First, python is simpler to use and to work on for a team
than C code. Then it has library to deal with TCP
packets without worrying about low level packet read-
ing. Also, the ZedBoard is used with UART protocol
described in IVB that has a support with the serial
library in python.
The code is modular so the tests can be run easily, sev-
eral modes are implemented in different scripts for each
use case. All the configuration for the tests use JSON
files to ease the user usage.

B. Embedded

The embedded part is written in the C programming
language, moreover, it doesn’t use dynamic memory allo-
cation since the allocation time isn’t deterministic, which
isn’t suitable for a Cubesat use. It also doesn’t use most
of the standard C library since most of it isn’t used and
would be too heavy for the limited amount of memory of
the satellite.
The code is sent to the card using the Xilinx software
development kit by AMD.
The communication with the board uses the UART pro-
tocol which is a simple protocol to transfer data with
embedded systems via USB.

C. Cryptography

1. ECC

Elliptic Curve Cryptography (ECC) is based on the
Elliptic Curve Discrete Logarithm Problem that is
known for being extremely slow to reverse [4]. It uses
elliptic curves on finite (or Galois) fields Fp.
The seed is a point on an elliptic curve, then by multi-
plying this point k times, another point is obtained, this
point is the public key and the number k is the private
key.
The ECC is used as a symmetric ciphering process for
this project by exchanging public keys to form a shared
secret.
While Rivest-Shamir-Adleman (RSA) ciphering is widely
used, for a Cubesat use, the Elliptic Curve Cryptography
(ECC) is preferable. Indeed, for the same amount of
protection, the key size is small by a factory up to 1:30
for 256 bits of security.

Security ≤ 80 112 128 192 256

ECC Key Size (bits) 160 224 256 384 521

RSA Key size (bits) 1024 2048 3072 7680 15360

Key size ratio 1 : 7 1 : 10 1 : 12 1 : 20 1 : 30

TABLE I. RSA key size vs ECC key size for different levels
of security

2. Implementation

The mbedtls library [5] enabled the actual implemen-
tation of the ECC cryptography in the embedded code.
It is a lightweight library that implements the basic of
cryptography in the C programming language.
The previous intern working on the subject has already
adapted the mbedtls library to the project by removing
parts of the source code useless to the project. And I
fixed the last compilation issues to ensure the correct op-
eration of the library.

D. Interfaces

The interfaces for the first iterations were therefore
limited to the following ones.

serv.py

Simulation

YamCS

sim_client.py

ZedBoard

TCP

TCP

TCP

UART
TC Packet

ping TM

TC
 Packet

duration,m
ode


pi
ng

 T
M

tim
e,

 a
lti

tu
de

FIG. 4. The interfaces of the OBC for the first iteration

V. RESULTS

A. Interfaces

For the demonstration on July the 21st everything
worked as planned, the packet sent from the operation



4

software got to the GS that transmitted it to the OBC.
The OBC sent the command to the simulation that gave
the result back. The result has been printed on the termi-
nal running the python interface script. And finally the
ping TM was sent to the GS. The framework is working
as expected and is waiting for the second iteration to be
refined.

B. Ciphering library

The library successfully generates private and public
keys. It can also generates certificates with all informa-
tion provided.

VI. DISCUSSION

A solution to bypass the use of UART is to configure
the board’s ethernet port to allow transfers via TCP di-
rectly to the board. I didn’t go in much details to try to
make it work since it was more on the hardware part of
the development, but it will be useful on the second or
third iteration of the project.
Since the cryptography wasn’t the highest priority for
the first iteration, there is still some work to do on it,
especially writing or get a library to have a ciphering
function. Indeed in its current state, the library can gen-
erate private and public keys and also certificates, but
cannot use them to cipher an information.

VII. CONCLUSION

Developing a framework to interface every part of an
IT project represents almost as much time as developing
each part individually, it needs a lot of discussions to
make sure everyone is okay with the definition of the
data to exchange. And the earlier is always the better to
have these talks, because late definition of interfaces often
end up in huge project refactoring. Then working on the
developing of a framework for each Cubesat project

A. Future work

As explained in VI the board shall use an ethernet
driver to simplify all communications and in the long
term getting rid of the python part.
The second iteration will also begin shortly after the suc-
cess of the first one, then a lot of work around cryptog-
raphy will have to be done. The interaction with the
camera must also be handled, the saving process of the
picture and sending it to the GS.

VIII. ACKNOWLEDGEMENT

Thanks to Thibault Gateau, my tutor, for guiding me
through the subject in a very limited time, to Marc
Justicia-Mayoral for his precious help and expertise on
the embedded code. And thanks to the whole CREME
team for their cooperation in the project by sharing all
needed information and helping me on various aspects.

[1] M. Langer and J. Bouwmeester, Reliability of cubesats -
statistical data, developers’ beliefs and the way forward
(2016).

[2] C. C. for Space Data Systems, Space packet protocol
(2020).

[3] C. C. for Space Data Systems, TM space data link protocol
(2021).

[4] S. Nakov, Elliptic curve cryptography (ECC) (2018).
[5] TrustedFirmware, MbedTLS github repository (2022).

https://digitalcommons.usu.edu/smallsat/2016/TS10AdvTech2/4/
https://digitalcommons.usu.edu/smallsat/2016/TS10AdvTech2/4/
https://public.ccsds.org/Pubs/133x0b2e1.pdf
https://public.ccsds.org/Pubs/132x0b3.pdf
https://cryptobook.nakov.com/asymmetric-key-ciphers/elliptic-curve-cryptography-ecc
https://github.com/Mbed-TLS/mbedtls

	Implementation of a Framework for the On-Board Computer in the Cubesat Test Bench Project Hycube
	Introduction
	Context
	Cubesats/Nanosats
	Satellites test benches
	Hycube structure
	CCSDS communication protocol

	Aim & Objectives
	Hycube first iteration
	Cryptography

	Methodology
	Python
	Embedded
	Cryptography
	ECC
	Implementation

	Interfaces

	Results
	Interfaces
	Ciphering library

	Discussion
	Conclusion
	Future work

	Acknowledgement
	References


