
Rapport de stage
Développement logiciel pour l’équipe Structures

Nom de l’entreprise : BETA Technologies

Trimestre du stage : Automne 2024

Lieu principal du stage
Ville : Montréal
Province : Québec
Pays : Canada

Nom du superviseur de stage : Alain Richer

Nom de l’étudiant : Matthieu BASSET
Matricule : 2225981

Présenté à : Lévis Thériault

Polytechnique Montréal
2025-01-31

Résumé

Ce stage est une réponse à un besoin de l’équipe de structures de l’entreprise
BETA Technologies. Afin de gagner en productivité, ils désirent développer
de nouveaux logiciels permettant aux ingénieurs de passer moins de temps
sur des tâches répétitives. À partir des outils existants, il faut donc concevoir
et développer des outils qu’ils puissent aisément prendre en main.

L’objectif est donc de proposer en quatre mois des livrables aidant déjà
à soulager la charge de travail afin de pouvoir accélérer le processus de
certification d’un avion.

Les logiciels développés ont effectivement permis a posteriori de suppri-
mer certaines tâches répétitives.

Remerciements

Je tiens à remercier toutes les équipes des bureaux de Montréal de BETA Technologies qui ont
été d’une grande bienveillance à mon égard et avec qui ce fut un plaisir de travailler et discuter.
Plus particulièrement Alain Richer, mon superviseur, qui bien que me laissant une grande auto-
nomie, a toujours été présent pour me guider dans mon travail en cas de besoin. Aussi Thomas
Beeson, mon encadrant plus direct avec qui j’ai travaillé sur le Skintool, ses retours honnêtes, qui
pointaient les améliorations possibles, mais soulignaient aussi le travail bien fait, m’ont motivé à
me dépasser pour proposer un logiciel qui a su impressionner l’équipe.
Enfin un mot particulier pour mes collègues stagiaires Minh Anh Dao et Raphael Barral avec qui
il aura été un plaisir d’échanger dans notre bureau au cours de ces quatre mois.

Table des matières

Résumé .. 3
Remerciements ... 4
Table des matières ... 5
Définitions, abréviations et sigles ... 7
I Introduction ... 8
II Mise en Contexte .. 9

II.1 BETA Technologies .. 9
II.2 Contexte du stage ... 10
II.3 Responsabilités et rôle en tant que stagiaire .. 10
II.4 Déroulement du stage ... 10
II.5 Environnement de travail ... 11

III Retour d’expérience ... 13
III.1 Compétences professionnelles et techniques .. 13
III.2 Habiletés personnelles et relationnelles ... 13
III.3 Lien avec les apprentissages du programme d’études .. 14

IV Skin Tool ... 15
IV.1 Mise en contexte ... 15
IV.2 Objectifs poursuivis .. 15
IV.3 Revue documentaire et présentation des analyses ... 16
IV.4 Approche ... 18
IV.5 Résultats ... 18

V Mapping Tool .. 19
V.1 Mise en contexte ... 19
V.2 Objectifs poursuivis .. 20
V.3 Approche, travail réalisé ... 20
V.4 Résultats ... 23

VI Conclusion ... 25
Références .. 26
Annexes ... 27

5

Liste des figures

Fig. 1: ALIA Modèle A250 (VTOL) .. 9
Fig. 2: ALIA Modèle CX300 (CTOL) ... 9
Fig. 3: Architecture proposée pour le Skintool (UML informel présenté) 16
Fig. 4: Définition du contexte de l’inter-rivet buckling ... 17
Fig. 5: Définition de la géométrie de l’OSB ... 18
Fig. 6: Définition des constraintes sur l’OSB ... 18
Fig. 7: Validation locale des tests sur la méthodologie .. 19
Fig. 8: Représentation d’un modèle DCEL dans un cas simple ... 21
Fig. 9: Trois cas rencontrés lors de la détection de coins ... 22
Fig. 10: Exemple de rendus proposé par le logiciel .. 23
Fig. 11: Exemple de mapping, en orange les éléments 1D .. 24
Fig. 12: Exemple de courbe empirique ... 27
Fig. 13: Autre exemple de courbe .. 28
Fig. 14: Exemple de pipeline fonctionnelle ... 29
Fig. 15: Exemple de pipeline échouant à passer les tests ... 29
Fig. 16: Exemple de pipeline totalement défectueuse ... 29
Fig. 17: Guide Mapping Tool (1) .. 30
Fig. 18: Guide Mapping Tool (2) .. 30

Sources :
– Fig. 1 et Fig. 2 : https://www.beta.team/aircraft
– Fig. 4 : [1]
– Annexe A: [2]

Liste des annexes

A. Courbes OSB .. 27
B. Exemples de pipelines .. 29
C. Guide d’utilisation du Mapping Tool ... 30

6

https://www.beta.team/aircraft

Définitions, abréviations et sigles

Sigles

– VTOL: Vertical Takeoff and Landing (Décollage et atterrissage vertical)
– eVTOL: VTOL électrique
– CTOL: Conventional Takeoff and Landing (Décollage et atterrissage conventionnel)
– FAA : Federal Aviation Administration
– venv : Virtual Environment (Python)
– CI/CD : Continuous Integration/Continuous Deployment
– IDE : Integrated Development Environment
– IA : Intelligence Artificielle
– IRB : Inter-rivet buckling
– OSB : Open Span Buckling
– DCEL: Doubly Connected Edge List, défini plus précisément dans le rapport

Noms et concepts souvent utilisés

– Mapping Tool et Skin Tool : ce sont les deux outils sur lesquels j’ai travaillé, il s’agit de leur
dénomination au sein de l’entreprise, j’ai donc conservé leur nom original, bien qu’étant anglais.

– Élément : Souvent un triangle ou quadrilatère dans un modèle utilisant les éléments finis.
Détaillé dans le rapport.

– GitLab : Implémentation du système du contrôle de version de fichier git permettant d’héberger
des instances privées.

– Pipeline : Ensemble des étapes de validations effectuées par le serveur GitLab quand demandé.
Cet anglicisme est omniprésent et je ne lui ai pas trouvé d’équilvalent.

– IDE : Sigle défini ci-dessus. Il s’agit du logiciel principalement utilisé pour écrire le code (par
exemple Microsoft Visual Studio Code, neovim, Intellij, etc.).

– buckling : Flambage, terme de mécanique des structures désignant un phénomène plus violent
qu’un pli, c’est un état irréversible. Beaucoup d’études sont centrées sur ce phénomène, car il
veut être évité

– Inter-rivet buckling : Flambage inter rivets. Phénomène se produisant quand un panneau entre
deux rivets est compressé.

– Open span buckling : Flambage ouvert

7

Développement logiciel pour l’équipe Structures

I Introduction

Ce rapport détaille le développement de deux logiciels : le Skin Tool et le Mapping Tool. Ce sont
des outils ayant pour vocation de soulager les ingénieurs de certaines tâches répétitives inhérentes
à l’utilisation de certains logiciels de conception 3D utilisés pour concevoir, ici, un avion électrique.

Ce stage intevient dans un contexte dans lequel BETA Technologies s’apprête à effectuer
un premier vol avec un avion de production. Les équipes de structures ont donc été fortement
sollicitées en novembre.

J’ai décidé de consacrer une partie dédiée à chaque outil, puisque chacun permet de mettre
en avant des difficultés différentes. Le Mapping Tool est un outil plus abouti avec une interface
graphique et une version compilée disponible pour les employés en ayant besoin. C’est un outil
de détection de frontières sur les maillages évitant de sélectionner des centaines de carrés à la
main dans un logiciel pour ensuite les réordonner. Le Skin Tool est un prototype d’outil visant à
unifier les méthodologies de toute l’équipe. C’est un outil dont le développement a nécessité de
se plonger en profondeur dans la mécanique des matériaux afin de pouvoir proposer un logiciel
robuste.

Ce rapport fait aussi état de mon ressenti du stage, et présente le contexte dans lequel
l’entreprise était lorsque j’y ai effectué mon stage.

8

Développement logiciel pour l’équipe Structures

II Mise en Contexte

II.1 BETA Technologies

BETA Technologies est une société américaine basée dans le Vermont, plus précisément à South
Burlington. Elle est spécialisée dans le domaine de l’aéronautique, notamment la conception et
production d’avions électriques, mais également de bornes de recharge pour ces derniers. Son
but est de proposer un avion électrique à décollage vertical (VTOL). Elle a été fondée en 2017
par Kyle Clark, un ingénieur et pilote, et Martine Rothblatt qui a grandement participé à son
financement, étant PDG de United Therapeutics, premier client de BETA Technologies.

Le premier vol a eu lieu en 2018, les vols de test se sont multipliés jusqu’en novembre 2024,
moment où le modèle CX300 (CTOL) a obtenu une autorisation de la FAA (agence américaine
de réglementation de l’aviation civile) pour réaliser un vol.

L’entreprise a annoncé en mars 2023 avoir ouvert des bureaux à Montréal, c’est dans ces
bureaux que j’ai eu l’occasion d’effectuer mon stage. Initialement situés en centre-ville, les locaux
ont été déplacés au 9325 Avenue Ryan à Dorval, accolés aux pistes de l’aéroport Pierre-Elliott
Trudeau de Montréal, afin d’avoir un accès à ces dernières pour accueillir les prototypes d’avions
de la société. BETA Technologies propose plusieurs types de produits actuellement :
– ALIA CX300, le modèle CTOL c.-à-d. à décollage conventionnel, tel un avion de ligne classique,

en prenant de la vitesse sur une longue piste de décollage. Un modèle de cette série a été
construit et a effectué son premier vol durant mon stage le 13 novembre 2024. Voir Fig. 2.

– ALIA A250, le modèle VTOL de la boîte, mais également capable de CTOL. Le VTOL est un
mode de décollage et atterrissage similaire à un hélicoptère, nécessitant moins d’espace pour
décoller et atterrir. Voir Fig. 1.

– Les chargeurs, notamment le “Charge Cube” et le Mini Cube, sont capables de recharger des
aéronefs électriques, mais aussi des véhicules terrestres. BETA Technologies est par ailleurs
responsable de leur déploiement, qui s’étend peu à peu aux États-Unis, partant de la côte Est.

Fig. 1. – ALIA Modèle A250 (VTOL) Fig. 2. – ALIA Modèle CX300 (CTOL)

9

Développement logiciel pour l’équipe Structures

L’entreprise a assurément su susciter l’intérêt, en octobre 2024, une troisième campagne de
financement a amené le capital de l’entreprise à plus d’un milliard de dollars US.

II.2 Contexte du stage

Mon stage s’inscrit dans le désir des équipes de Montréal –notamment l’équipe de développement
logiciel– de concevoir des outils permettant d’accélérer le travail des autres équipes, dans mon
cas, il s’agit de développer des logiciels réalisant des tâches répétitives qu’il est pertinent
d’automatiser, au moins dans une certaine mesure. Les équipes des bureaux de Montréal sont
en grande partie spécialisées dans l’analyse de structures (au sens mécanique des structures,
résistance des matériaux, etc.). Ces équipes ont souvent à effectuer des tâches sur des résultats
de logiciels de modélisation 3D, que ce soit chercher des valeurs minimales/maximales dans des
résultats d’analyses, sélectionner à la main des “éléments” sur un modèle.

II.3 Responsabilités et rôle en tant que stagiaire

Mon rôle, comme amorcé dans le contexte est de développer des outils pour soutenir l’équipe de
structure des bureaux de Montréal, j’ai travaillé sur deux outils différents. Le Mapping Tool et
le Skin Tool, le premier a pour vocation de créer des mappings c.-à-d. des tableaux représentant
des éléments sur un panneau de l’avion, pouvant être ensuite exportés dans Microsoft Excel (sera
appelé simplement Excel) afin de mener des analyses. Le second est un outil ayant pour objectif de
centraliser les méthodologies d’analyse de structure au sein d’un unique logiciel pour harmoniser
les analyses entre les différents ingénieurs en charge.

II.4 Déroulement du stage

Mes tâches variaient souvent d’une semaine à l’autre en fonction des besoins des équipes, je
pouvais me concentrer plus sur un outil une semaine où les équipes avaient besoin d’avoir une
version fonctionnelle du logiciel, ou alors retarder le début du travail sur un outil pour améliorer
un outil plus important à perfectionner sur le moment.

La première semaine a principalement été dédiée à l’adaptation à l’environnement de travail
(présentation des bureaux, des équipes que l’on rencontrera le plus souvent), et à la configuration
de notre environnement de programmation (voir Section II.5). Dès cette semaine, j’ai déjà été
amené à réfléchir à un algorithme pour détecter les frontières d’un ensemble de points en trois
dimensions, qui se trouvera être la clef de voûte du Mapping Tool. J’ai continué à travailler dessus
pendant le mois de septembre, tout en commençant à me familiariser avec les méthodologies que
j’allais devoir implémenter dans le Skin Tool.

10

Développement logiciel pour l’équipe Structures

En octobre, j’ai commencé à réaliser une interface graphique autour de l’algorithme de
détection de frontière, cela a été l’occasion de me familiariser avec Qt, un cadriciel conçu pour
développer des applications graphiques, avec la possibilité de programmer en C++ ou en Python,
ce dernier sera retenu, car c’est le langage principalement utilisé au sein de l’équipe logiciel.

Le mois de novembre est marqué, comme la fin du mois d’octobre par la date du premier
vol (13 novembre) se rapprochant. Les équipes de structures étant très fortement sollicitées pour
finir les analyses à temps, les interactions étaient moins possibles, mon travail était donc plus
concentré sur des corrections de problèmes existants ou le perfectionnement de certains détails
en attendant de pouvoir avoir de nouveaux retours concrets des utilisateurs. J’ai travaillé à ce
moment à la conception de tests (unitaires et globaux) sur les méthodologies, ainsi qu’à leur
intégration dans les outils. L’objectif de ces tests est de certifier que le logiciel donnera les mêmes
résultats que l’ancienne méthode de calcul (souvent des grands classeurs Excel).

Finalement, en décembre, il a été temps de conclure mon travail, j’ai consolidé la documen-
tation que j’avais écrite au fil du stage afin de permettre à mon encadrant Thomas de pouvoir
continuer le travail sur mes outils. C’est aussi l’introduction d’une infrastructure plus formelle de
gestion de projet avec des tickets Jira pour les retours et la mise en place de nouveaux outils pour
mieux suivre l’avancement des équipes. J’ai aussi pu travailler à mettre en place un prototype
d’interface pour le Skin Tool.

II.5 Environnement de travail

Le mot d’ordre de BETA Technologies sur l’environnement de travail est de toujours laisser le
plus de choix aux employés et stagiaires pour que chacun travaille d’une manière qui lui convient
(travail hybride, liberté sur les logiciels).

II.5.1 Locaux et cadre de travail

Comme dit précedemment, les locaux de l’entreprise sont situés au 9325 Avenue Ryan à Dorval.
Ces locaux étaient loin de chez moi (environ 50 min de temps de trajet aller, 1 h 30 avec bouchons),
ce qui m’a amené à souvent télétravailler afin d’économiser ce temps. Bien que mon stage était
hybride (partiellement en présentiel et télétravail) sans contrainte spécifique de présence au
bureau, j’ai essayé d’être en moyenne trois jours par semaine (mardi, mercredi, jeudi), car le cadre
de travail était vraiment agréable.

Tout était pensé pour faciliter la vie des employés : bureaux montés sur verrins et chaises
ergonomiques pour éviter le mal de dos, cuisine avec de nombreux snacks, des fours à micro-
ondes et des réfrigérateurs pour se restaurer avec la nourriture présente ou amener son repas.
L’entreprise proposait aussi un repas offert le mercredi, l’occasion pour plus de personnes de venir
au bureau et sociabiliser.

11

Développement logiciel pour l’équipe Structures

Les locaux dans leur ensemble sont modernes et ce fut un plaisir d’y travailler. La proximité
avec l’aéroport était aussi un avantage, pouvoir voir des avions atterrir toutes les cinq minutes
est un luxe !

II.5.2 Logiciel

La configuration occupe une partie importante de la première semaine. Dans l’absolu le choix des
outils est assez libre, par exemple le choix de l’IDE (bien que Microsoft Visual Studio Code était
encouragé). Les ordinateurs étaient configurés pour utiliser Microsoft Windows 11, il n’était pas
vraiment possible d’utiliser d’alternatives comme Linux en raison de la forte dépendance de mon
travail avec la suite Microsoft Office et certains problèmes de portabilité de Qt.

Pour le développement, puisque tous les logiciels doivent être écrits en Python, sa configu-
ration est importante. La versoin à utiliser n’était pas fondamentalement importante, j’ai utilisé
Python 3.10, 3.11 et 3.12 en fonction des situations sans conséquences majeures. Python 3.13,
sorti durant mon stage était trop récent pour une utilisation professionnelle.
Afin d’avoir une gestion de versions de paquets propre, l’outil PDM [3] a été très utile. Il s’agit
d’un gestionnaire de paquets Python, à l’instar de poetry ou pip. Cet outil permet de créer un
environnement virtuel (venv) dédié par projet, permettant d’utiliser des versions de librairies
différentes par projet par opposition à pip par exemple. Aussi PDM permet de créer des scripts
afin de réaliser automatiquement des tâches prédéfinies (compilation, formattage, exécution de
tests, etc.).

Aussi, BETA Technnologies dispose d’un serveur GitLab propre dans le but de stocker le
code des différents prrojets. Il propose aussi des outils de CI/CD comme des pipelines que j’ai eu
l’occasion d’utiliser. La connexion au serveur se faisait nécessairement via une clé SSH.

Comme évoqué précedemment, l’entreprise a également mis en place un système de tickets sur
une instance de la plateforme Jira (développée par Atlassian). Ce système permet aux utilisateurs
des logiciels de rapporter tout problème avec un des logiciels développé par l’équipe. L’équipe
logiciel peut ensuite attribuer à un membre la charge de corriger le problème. L’utilisation de la
plateforme Alignd a aussi été encouragé afin de pouvoir suivre au mieux l’avancement de chaque
tâche plus facilement.

Pour la communication, l’application Slack était privilégiée, étant pratique pour comparti-
menter les thèmes de dialogue dans des salons de discussion spécifiques. Pour les réunions, le
logiciel Zoom était préféré, l’intégralité des salles de réunion des bureaux étant munies de tablettes
permettant de créer/gérer les réunions.

12

Développement logiciel pour l’équipe Structures

III Retour d’expérience

III.1 Compétences professionnelles et techniques

Durant ce stage, mes compétences techniques ont été largement sollicitées et j’en suis satisfait.
La réalisation des logiciels demandés exigeait une grande rigeur dans l’utilisation du langage
Python. Mon expérience dans plusieurs langages de programmation m’a également permis d’avoir
une vision plus transversale de la programmation et donc de concevoir des algorithmes indépen-
damment de leur implémentation concrète.

J’ai aussi pu mettre à contribution mes connaissances et compétences en mécanique des
structures et en aéronautique que j’avais acquises lors de mon cursus d’ingénieur initial à l’ISAE-
Supaero. Cela a été un atout pour plus me projeter plus facilement dans les problématiques des
équipes, ainsi, je n’ai donc pas été submergé par l’abondance de termes techniques. Cela m’a
aussi aidé à plus aisément apréhender les méthodologies que je devais implémenter en Python,
le fait de comprendre les phénomènes physiques derrière les calculs de structure rendaient leur
appréhension plus aisée, mais me permettait par ailleurs de détecter d’éventuelles erreurs ou
d’adapter certaines formules, au-delà de simplement les transcrire.

III.2 Habiletés personnelles et relationnelles

Un des plus beaux moments de mon stage a été le premier retour sur le Mapping Tool. Après avoir
déployé la première version de test du logiciel et l’avoir présenté rapidement dans une réunion,
il a commencé à être utilisé. Le premier retour que j’ai reçu fut de la part d’un collègue me
remerciant de lui avoir fait gagner plusieurs heures grâce à l’automatisation d’une tâche répétitive
(sélection des éléments en bordure), qui prenait désormais seulement quelques minutes. Le cadre
était complètement différent d’un environnement scolaire, mon logiciel était loin d’être parfait et
avait encore des bogues dans certains cas, et manquait de fonctionnalité par rapport au produit
final. Néanmoins, il permettait déjà d’éviter plusieurs heures de travail fastidieux.
C’est une des leçons que j’ai retenu, par opposition à un travail scolaire où on cherche une note
maximale pour un travail parfait ou presque, en milieu professionnel, en tout cas dans ma situation
pour un outil interne, on préfèrera avoir un outil fonctionnel au bout de deux mois, quitte à
le perfectionner, plutôt que s’acharner six mois à couvrir des cas rarissimes que les utilisateurs
vérifiraient déjà manuellement.
Aussi, il est important d’avoir des échanges fréquents pendant le développement des outils, afin
de s’assurer que la direction convienne aux utilisateurs finaux. En effet, si une fonctionnalité n’est
finalement pas désirée, il est préférable de le savoir au plus tôt, dans le but de s’éviter du temps
de travail dessus.

13

Développement logiciel pour l’équipe Structures

J’ai aussi pu constater qu’il faut parfois tempérer ses objectifs, les utilisateurs n’ont pas
toujours conscience de la complexité d’implémentation d’une tâche, ou de ce qui les aiderait au
mieux. À plusieurs reprises, j’ai discuté avec mon encadrant afin de définir les exigeances pour
les prochaines versions après en avoir discuté avec les équipes utilisant le logiciel, et souvent il
en ressortait des lignes directrices bien différentes de ce qui avait été exprimé. En somme, les
utilisateurs nous donnaient avant tout des pistes. Au-delà de l’implémentation des fonctionnalités
correspondantes, nous évaluions la faisabilité, mais également la pertinence des propositions, pour
décider de leur priorité, et occasionnellement les adapter pour les rendre réalisables dans un temps
raisonnable.

III.3 Lien avec les apprentissages du programme d’études

Parmi les cours que j’ai suivi à Polytechnique Montréal, je pense que tous m’ont été utiles durant
ce stage.
Tout d’abord, de manière très directe, le cours LOG8430 : « Architecture logicielle et conception
avancée ». En effet, ayant développé des logiciels, les notions de ce cours se sont appliqués on
ne peut plus directement. Que ce soient les différents patrons d’architecture logicielle, le contrôle
de la qualité, la détection de mauvaises habitudes de code (permettant de revoir l’architecture
logicielle afin de la rendre plus modulaire). Ces notions m’ont permis d’avoir un regard plus éclairé
sur l’architecture de mes logiciels, au niveau macroscopique comme à l’échelle d’une fonction.
Je pense aussi au cours INF8775 : « Analyse et conception d’algorithmes » qui a consolidé
mes connaissances sur la conception d’algorithmes d’un point de vue complexité (temporelle et
spatiale). Une de mes premières tâches ayant été de concevoir un algorithme de détection de
frontières d’un ensemble de points avec la contrainte explicite qu’il devait être efficace.

Au-delà des cours m’ayant servi de manière très directe, ayant suivi beaucoup de cours
dont les applications sont à réaliser en Python (notamment beaucoup de cours sur l’IA), j’ai
affûté, au fil de mon cursus à Polytechnique Montréal, mes connaissances en Python. Cela m’a
permis d’appréhender le langage sous différents angles au fil de ma scolarité, et donc à terme,
durant mon stage, d’être capable de choisir quelle approche je désirais afin de réaliser une tâche
donnée. J’ai aussi eu l’occasion de travailler avec beaucoup de librairies différentes, être en équipe
avec des étudiants qui avaient leur propre manière de coder, ou en consultant les sujets/corrigés
de TP et ainsi me constituer mes propres habitudes, en gardant ce que je trouvais pertinent.
Par exemple, j’ai découverts certains modules de la librairie standard comme itertools ou des
librairies comme pandas.

Et outre les cours dans lesquels j’utilisais Python, mes cours en génie informatique et logiciel
m’ont servi dans leur ensemble. En effet, il était même –selon moi– préférable d’avoir des cours
demandant l’utilisation de langages différents. Devoir réaliser des travaux dans de nouveaux
langages, en utilisant de nouveaux cadriciels, tout cela contribue à développer une capacité à voir

14

Développement logiciel pour l’équipe Structures

la programmation au-delà du langage de programmation. Ainsi, on réfléchit à un algorithme, à une
structure de données, à une architecture et non leur implémentation dans un langage spécifique.
Cela permet aussi d’amener des pratiques permettant une meilleure lisibilité de code en utilisant
des patrons de conception qui ne sont pas nécessairement courants dans un langage. Par exemple
l’utilisation d’enums en Python n’est pas très courant, mais c’est omniprésent en Rust, c’est une
pratique qui permet d’assigner un type à une valeur qui aurait été autrement une chaîne de
charactères, et donc permet un contrôle plus fin des données.

IV Skin Tool

IV.1 Mise en contexte

Le Skin Tool, ou Skintool est à l’origine le projet principal de mon stage. Il l’a techniquement
été, puisque le Mapping Tool en sera un composant. Cependant, j’ai donc plus travaillé sur un
composant de ce logiciel que sur le logiciel lui-même.
Le but du Skin Tool est de regrouper au sein d’un même logiciel les méthodologies, parfois
différentes, utilisées par les analystes pour mener leurs calculs de structures sur les panneaux de
l’avion. Un panneau étant une surface, souvent en matériau composite, qui compose la plupart
de l’extérieur de l’avion (la partie blanche), par opposition aux poutres, souvent en métal et à
l’intérieur de la structure.

Plusieurs analyses sont menées sur ces panneaux : inter-rivet buckling (IRB), open span
buckling (OSB), crippling, etc. Les outils actuels pour ces méthodologies sont des classeurs Excel.
Il a donc été décidé d’adapter ces outils en Python. Cela permettra à terme de gagner en
performance, portabilité, modularité et homogénéité. Les différences actuelles entre méthodologies
viennent principalement du fait qu’elles sont appliquées sur des parties différentes de l’avion (ailes,
fuselage, empenage, etc.) avec des contraintes particulières différentes. Les équipes en charge de
chaque partie de l’avion ont donc adapté des outils à leur situation particulière. Le défi du Skintool
est donc de réussir à traiter tous ces cas avec un unique outil, tout en permettant à chaque équipe
de pouvoir l’utiliser dans sa situation précise.

IV.2 Objectifs poursuivis

Deux grands objectifs furent suivis durant mon stage pour cet outil.
Le premier était de « traduire » des documents Excel en Python, c’est-à-dire regarder les formules
présentes, identifier les entrées, les sorties, pour reproduire le comportement en Python.
Le second était d’écrire des tests pour les modules que j’avais écrit, mais aussi pour un module
exitant. Ces tests avaient pour but de rassurer les analystes en garantissant que l’outil Python
donnerait bien les mêmes valeurs que l’outil Excel. Les tests ont tout d’abord porté sur l’IRB,

15

Développement logiciel pour l’équipe Structures

car plus simple à mettre en place, effectivement, il n’y a besoin d’implémenter que deux formules,
là où l’OSB comporte une dizaine d’étapes, beaucoup se basant sur des interpolations de courbes
trouvées dans la littérature.

Un objectif n’ayant pas été complètement atteint était d’avoir une version fonctionnelle de
l’outil, même avec seulement deux modules (IRB, OSB). L’idée est d’avoir un serveur pouvant
recevoir des requêtes. Ces requêtes contiennent soit la définition d’un ou plusieurs panneaux, soit
une indication pour commencer une ou plusieurs analyses. La structure se veut très modulaire,
le serveur ne dépend pas de la provenance des données, seul leur format compte. Aussi le serveur
peut être local tout comme hébergé, il n’y a pas de différence pour le client qui envoie une requête.
L’architecture présentée en Fig. 3 illustre la structure voulue pour le serveur gérant les requêtes.
Il s’agit d’un exécutable Python ayant un récepteur pour les requêtes HTTP.

Fig. 3. – Architecture proposée pour le Skintool (UML informel présenté)

Le client était, lors des tests mi-décembre avant la fin de mon stage, un classeur Excel envoyant
des requêtes via des macros.

IV.3 Revue documentaire et présentation des analyses

Afin d’adapter les méthodologies, au-delà des classeurs Excel, j’ai également consulté les ouvrages
de référence pour comprendre les formules utilisées, en profiter pour vérifier l’exactitude de
la procédure, parfois ajouter des tests lorsque le livre proposait une hypothèse à vérifier pour
appliquer une formule. J’ai principalement revu les méthodologies de l’inter-rivet buckling via [1]
et j’ai bien étudié la méthodologie de l’open span bukling via encore [1], mais aussi [4] et [2].

16

Développement logiciel pour l’équipe Structures

IV.3.1 Inter-rivet buckling

La méthodologie pour l’IRB est relativement simple, il s’agit d’une seule fomule.

𝜎ir =
𝑐𝜋2𝐷11
𝑡𝑠2

Avec 𝑐 un coeficient valant 1 ou 3 en fonction de la configuration des rivets, 𝐷11 étant un coeficient
dépendant du matériau et 𝑡 l’épaisseur du panneau. La représentation du problème est aussi assez
claire comme on peut le constater sur la Fig. 4.

Fig. 4. – Définition du contexte de l’inter-rivet buckling

IV.3.2 Open Span Buckling

L’Open Span Buckling est bien plus complexe, comme en témoigne la Fig. 5 pour la géométrie,
on a en effet la possibilité d’avoir un cœur plus épais, un trou dans le panneau, une rampe, une
courbure du panneau. Chacun de ces paramètres pourra avoir une influence, il faudra vérifier s’ils
sont présents et si oui, s’ils ont une influence sur les contraintes admissibles. Et les contraintes
appliquées sont aussi plus complexes comme le témoigne la Fig. 6. De plus, il y a aussi des
conditions aux limites sur l’état de chaque arête. Aussi, on aura besoin d’interpoler des valeurs
sur des courbes empiriques (cf. Annexe A).

Sans rentrer dans le détail de chaque étape de cette analyse, on peut constater sa complexité
bien plus importante. Cela en fait un cas pertinent pour l’implémentation de tests, en effet avec
le grand nombre de cas particuliers à gérer, il est nécessaire de passer rigoureusement en revue
la méthodologie afin d’en capturer toutes les subtilités.

17

Développement logiciel pour l’équipe Structures

Fig. 5. – Définition de la géométrie de l’OSB Fig. 6. – Définition des constraintes sur l’OSB

IV.4 Approche

La traduction des méthodologies et l’écriture des tests n’est pas fondamentalement complexe. Il
s’agit simplement d’un processus demandant de la rigueur dans le but de s’assurer de l’exactitude
des résultats. La revue détaillée de la méthodologie de l’open span buckling m’aura d’ailleurs
permis de découvrir deux bogues présents dans l’implémentation existante.

Une difficulté a été de trouver des exemples pour tester mon implémentation. La plupart des
cas de tests sont des fichiers Excel sur le Google Drive de l’entreprise, il a été un peu fastidieux
de trouver des cas permettant de couvrir suffisamment de scénarios, permettant de s’assurer une
couverture raisonnable de la méthode. Et au-delà de les trouver, il a également fallu trouver un
moyen d’extraire les données des classeurs. Finalement, j’ai conçu un script Python allant lire
toutes les valeurs du classeur afin de les compiler dans un fichier CSV (Comma Separated Value,
format de stockage de fichier utilisé pour le stockage de données).

L’approche dans la couverture des tests a aussi été différente pour chaque analyse. Le module
de test sur l’IRB est bien plus exhaustif. En effet, grâce à sa simplicité, il a été utilisé afin de
concevoir un modèle pour les modules de test. Ainsi, j’ai écrit des tests unitaires pour chaque
fonction et vérifié tous les cas. À l’inverse, pour l’OSB, j’ai pu écrire quelques tests sur les premières
étapes, car elles sont simples, mais en avançant dans l’analyse, j’ai décidé d’écrire en priorité un
grand test macroscopique testant simplement les valeurs des paramètres à la fin de chaque étape.

IV.5 Résultats

Le module de test a été validé début décembre, je me suis également occupé de configurer GitLab
(la pipeline avait besoin d’une version spécifique de PDM pour fonctionner), une fois mis en place,
les tests, passant en local (comme on peut le voir sur la Fig. 7), fonctionnait aussi sur le serveur

18

Développement logiciel pour l’équipe Structures

(voir Fig. 14), et si l’on change du code en rapport avec le calcul, les tests ne passent évidemment
plus, bloquant le déploiement (par exemple sur Fig. 15).

La traduction des modules d’IRB et OSB ont bien amorcé le travail de l’équipe logiciel sur le
Skintool, le module de test a été jugé très pertinent et servira désormais de modèle pour l’écriture
de tests pour les autres outils. Enfin, la démonstration deux jours avant la fin de mon stage d’une
implémentation de client via Excel et communiquant avec le serveur Python a ouvert beaucoup
de perspectives pour la suite du développement de l’outil.

Fig. 7. – Validation locale des tests sur la méthodologie

V Mapping Tool

V.1 Mise en contexte

Le Mapping Tool est chronologiquement le premier outil sur lequel j’ai travaillé. À la fin de ma
première semaine, en attendant de finir d’obtenir mes accès aux différents services (GitLab, etc.),
on m’a donné une tâche à réaliser : trouver un algorithme permettant de trouver tous les éléments
en bordure d’un panneau, plus précisément, un maillage d’éléments.
On peut visualiser une structure similaire à celle présente sur la Fig. 10, j’ai accès à une liste
d’éléments (des polygones fermés, en pratique des triangles ou des quadrilatères quelconques), ces
éléments ont des sommets qui ont des coordonnées dans l’espace. Et mon but est donc de trouver
quels éléments sont sur la bordure de cette structure, sachant qu’elle peut également avoir un
trou au milieu.

Une fois ce travail réalisé, il pourra s’intégrer dans un outil permettant de construire des
mappings, ce sont des représentations en deux dimensions de la surface, avec les identifiants des

19

Développement logiciel pour l’équipe Structures

éléments agencés dans un tableau, de manière à reconstituer leur agencement sur la surface. Un
exemple de mappings est donné en Fig. 11.

Ce logiciel s’inscrit dans les outils utilisés pour les calculs sur modèles à éléments finis
(modèles approximant la géométrie réelle avec des « éléments », facilitant les calculs). En effet, une
fois le mapping obtenu, des fichiers Excel sont disponibles pour mener des analyses sur le panneau
en question, le mapping permet d’avoir ainsi une représentation sur un plan de la répartition des
contraintes une fois les résultats obtenus. Et puisque réaliser un mapping manuellement est très
fastidieux, automatiser ce processus était la bienvenue.

Enfin, afin d’obtenir les coordonnées des sommets à partir du modèle de l’avion et pouvoir
travailler avec des données réelles, le logiciel s’est appuyé sur le grand nombre de fichiers « h5 »
disponibles. Ce sont des fichiers permettant de compresser des données en un fichier binaire (cf.
[5]), et dans ces fichiers de résultats de simulations se trouve une table de tous les éléments, et
de tous les sommets avec leurs coordonnées.

V.2 Objectifs poursuivis

Mes tâches sur le Mapping Tool ont été très variées au fil de mon stage. J’ai d’abord dû concevoir
l’algorithme trouvant les bordures, puis isoler quatres arêtes, ensuite construire un mapping, puis
pouvoir détecter des éléments 1D (éléments composés de deux sommets, agissant comme une
poutre, ils ont une utilité mathématique pour les simulations) qui se trouvent souvent sur les
bords des panneaux et sont également importants pour les calculs.
J’ai par ailleurs dû créer une interface graphique afin de rendre le logiciel utilisable par le plus
grand nombre, avec pour objectif d’avoir une interface claire, non surchargée et fonctionnelle.

V.3 Approche, travail réalisé

Lorsque j’ai commencé à travailler sur l’algorithme de détection de frontières, je me suis tourné
vers une idée d’enveloppe convexe pour pouvoir trouver le bord du nuage de points, mais l’idée
s’est retrouvée rapidement limitante lorsque la géométrie de l’aile était plus complexe qu’un
plan bombé. J’ai alors opté pour une approche plus géométrique, basée sur la configuration des
éléments. Une première piste était de compter le nombre d’élements auxquel appartient un nœud.
Cette méthode fontionne lorsque le maillage n’est constitué que de carrés, mais est inutile dans les
autres cas. J’ai alors cherché si des papiers de recherche avaient abordé ce problème en essayant
de trouver des situations équilvalentes à la mienne. Finalement, en cherchant comment reboucher
un maillage, j’ai lu l’article [6], qui propose une méthode basée sur des « halfedge » pour détecter
la zone correspondant au trou. Je me suis alors renseigné sur cette méthode.

20

Développement logiciel pour l’équipe Structures

V.3.1 DCEL

Fig. 8. – Représentation d’un modèle DCEL dans un cas simple

Grâce à la piste du modèle « halfedge » j’ai découvert l’existence de la structure de donnée
« DCEL », (litt. liste d’arêtes doublement connectée) qui est une structure permettant justement
de trouver les frontières d’un maillage aisément. Cette structure comporte :
– Des nœuds
– Des faces
– Des « halfedge », des arêtes orientées.

Une arête est rattachée à une face, a un sommet de départ, elle est liée à une arête la précédent
et une suivante, ces deux dernières nécessairement attachées à la même face. Elle possède aussi
possiblement une arête jumelle, une arête attachée à une face adjacente et qui est orientée dans
le sens contraire.
Dans la Fig. 8, l’arête 3 a pour face l’élément 4300247, son arête précédente est 2 et la suivante
4, son nœud de départ est 4112716, son arête jumelle est la 9. L’arête 2 n’a pas de jumelle.

Construire une telle structure de données est une opération initialement coûteuse, mais une
fois obtenue, beaucoup d’opérations sont simplifiées. De plus, la taille des données en entrée ne
dépassant jamais 1000 éléments, la complexité s’est avérée un problème moins important que
prévu. Afin de savoir si un élément est sur une frontière, il suffit de regarder si l’une de ses arêtes
n’a pas de jumelle. Pour savoir si un maillage a un trou, il suffit de regarder s’il existe plus d’une
boucle fermée.

21

Développement logiciel pour l’équipe Structures

V.3.2 Arêtes, éléments 1D, mapping

Maintenant se pose un nouveau problème : découper la boucle extérieure en quatres arêtes. J’ai
finalement opté pour un calucl de produit scalaire le long de la boucle. Et les classe par valeur
croissante, ainsi les premiers éléments correspondent aux virages « brutaux », puisque le produit
scalaire approche 0 lorsque deux arêtes sont orthogonales ou presque.
Parmi les trois cas rencontrés dans les modèles, le troisième (Fig. 9) est problématique puisque
le coin est moins marqué, et pourrait être confondu avec une courbure forte localement. Le cas
ne s’est jamais présenté en pratique, mais la vérification graphique dans le logiciel est présente
en partie pour ces cas difficiles à juger.

Fig. 9. – Trois cas rencontrés lors de la détection de coins

La détection d’éléments 1D est faite grâce à des requêtes dans la base de données du modèle.
On cherche si un élément 1D partage deux sommets avec les éléments sur la bordure, on peut les
observer sur la Fig. 10, ce sont les traits oranges sur les bordures.

Un autre défi de la séparation en quatre arêtes a été leur labélisation. Si le panneau n’est
pas parfaitement aligné avec les axes du repère, il devient très difficile de trouver avec précision
quelle arête est à gauche, à droite, en haut, etc. Cette idée a donc été abandonnée à la fin de mon
stage au profit de la possiblité de renommer les arêtes manuellement dans l’interface graphique,
il s’agit du « 1. » dans la Fig. 18.

Enfin, le mapping, le cœur du logiciel. Après avoir construit tous ces éléments ce n’est plus
si difficile (dans les cas faciles). Pour le réaliser, on prend une des quatres arêtes comme point
de départ, puis on parcourt la structure avec des bandes en prenant à chaque fois les voisins
de la bande précédente. Un résultat est l’image de droite de la Fig. 10. Les cas comportant des
triangles sont les cas non triviaux. Lorsque la structure en possède, le parcours à base de voisins
se décale au fil des bandes. Le même problème apparaît lorsque l’on a un trou dans la structure. Il
est possible de pallier partiellement ce problème en effectuant deux mappings en partant d’arêtes
opposées, puis le reconstituer à partir de la sortie du programme. Cette solution convenait à
l’équipe, c’est un compromis, chercher à améliorer l’algorithme de manière à couvrir toutes les
géométries serait chronophage.

22

Développement logiciel pour l’équipe Structures

V.3.3 Interface graphique

Initialement la visualisation utilisait un navigateur, mais cette solution était relativement peu
réactive, ainsi, j’ai opté pour une application de bureau en Qt. J’ai pris cette décision basé sur le
fait que d’autres applications Qt ont déjà été développées par l’équipe logiciel de Montréal. J’ai
donc pu partir d’une base pour construire ma propre application.

V.4 Résultats

Le logiciel est évidemment le résultat principal, c’est le livrable le plus important de mon stage.
Comme dit dans la Section III.2, cet outil permet de faire gagner plusieurs heures à des ingénieurs
voulant réaliser des mappings.

Fig. 10. – Exemple de rendus proposé par le logiciel

L’interface graphique et sa visualisation n’est pas la seule sortie du logiciel. Il génère aussi un
fichier CSV et un fichier Excel (même contenu, juste mieux formaté, voir Fig. 11). Le mapping
est exporté de manière à garder les paramètres de rotation de l’utilisateur (l’interface permet de
faire tourner le mapping de manière à bien l’aligner).

23

Développement logiciel pour l’équipe Structures

Fig. 11. – Exemple de mapping, en orange les éléments 1D

24

Développement logiciel pour l’équipe Structures

VI Conclusion

J’ai eu l’occasion pendant ce stage de travailler sur des sujets passionnants et très concrets : la
conception et l’implémentation d’outils ayant pour portée principale de simplifier le travail des
autres employés.

Ce stage aura été une réelle opportunité pour moi de mettre mes compétences en program-
mation au profit directe d’une équipe professionnelle, c’est une expérience très rafraichissante
après deux ans d’études. J’ai aussi pu constater que programmer à plein temps permet d’apprendre
à utiliser de nouveaux outils extrêmement rapidement. J’ai pu me perfectionner en Python,
apprendre à utiliser Qt que j’utiliserai peut-être à nouveau pour des projets personnels.

Par ailleurs, ce fut également l’occasion de mettre en pratique mes connaissances en aéronau-
tique et mécanique des matériaux acquises lors de mon cursus à l’ISAE-Supaero, faisant de ce
stage la parfaite conclusion de mon double diplôme.

25

Développement logiciel pour l’équipe Structures

Références

[1] C. Kassapoglou, Design and Analysis of composite structures. John Wiley & Sons, 2013.

[2] Bruhn E.F., Analysis and design of flight vehicle structures. Tri-State Offset Company, 1973.

[3] « PDM python packet manager ». Consulté le: 30 janvier 2025. [En ligne]. Disponible sur:
https://pdm-project.org/

[4] Jones R.M., Buckling of Bars, Plates, and Shells,. Bull Ridge Publishing. [En ligne]. Dispo-
nible sur: https://books.google.com/books?id=UzVBr8b_jS8C,

[5] « The HDF5® Library & File Format ». Consulté le: 31 janvier 2025. [En ligne]. Disponible
sur: https://www.hdfgroup.org/solutions/hdf5/

[6] C. Feng, J. Liang, M. Ren, G. Qiao, W. Lu, et S. Liu, « A Fast Hole-Filling Method for
Triangular Mesh in Additive Repair », 2020. [En ligne]. Disponible sur: https://www.mdpi.
com/2076-3417/10/3/969

26

https://pdm-project.org/
https://books.google.com/books?id=UzVBr8b_jS8C,
https://www.hdfgroup.org/solutions/hdf5/
https://www.mdpi.com/2076-3417/10/3/969
https://www.mdpi.com/2076-3417/10/3/969

Développement logiciel pour l’équipe Structures

Annexes

A. Courbes OSB

Fig. 12. – Exemple de courbe empirique

27

Développement logiciel pour l’équipe Structures

Fig. 13. – Autre exemple de courbe

28

Développement logiciel pour l’équipe Structures

B. Exemples de pipelines

Fig. 14. – Exemple de pipeline fonctionnelle

Fig. 15. – Exemple de pipeline échouant à passer les tests

Fig. 16. – Exemple de pipeline totalement défectueuse

29

Développement logiciel pour l’équipe Structures

C. Guide d’utilisation du Mapping Tool

Extrait de ma présentation de fin de stage, permet de voir l’interface. Les commentaires indiquant
les fonctionnalités sont également issus de la présentation (laissés en anglais par conséquent).

Fig. 17. – Guide Mapping Tool (1) Fig. 18. – Guide Mapping Tool (2)

1. Add a compatible CSV file as input
2. Select the output
3. Select the type of plot
4. Run the algorithm

1. Edge renaming
2. Update names and result files/visuals
3. Enable EIDs on visual
4. Re-plot, change mapping start (resets

mapping!)
5. Switch between tabs/spaces in lists
6. Copy elements
7. Mapping rotation, flip, copy

30

	Résumé
	Remerciements
	Table des matières
	Liste des figures
	Liste des annexes
	Définitions, abréviations et sigles
	Sigles
	Noms et concepts souvent utilisés

	Introduction
	Mise en Contexte
	BETA Technologies
	Contexte du stage
	Responsabilités et rôle en tant que stagiaire
	Déroulement du stage
	Environnement de travail
	Locaux et cadre de travail
	Logiciel

	Retour d'expérience
	Compétences professionnelles et techniques
	Habiletés personnelles et relationnelles
	Lien avec les apprentissages du programme d'études

	Skin Tool
	Mise en contexte
	Objectifs poursuivis
	Revue documentaire et présentation des analyses
	Inter-rivet buckling
	Open Span Buckling

	Approche
	Résultats

	Mapping Tool
	Mise en contexte
	Objectifs poursuivis
	Approche, travail réalisé
	DCEL
	Arêtes, éléments 1D, mapping
	Interface graphique

	Résultats

	Conclusion
	Références
	Annexes
	Courbes OSB
	Exemples de pipelines
	Guide d'utilisation du Mapping Tool

